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Human RNA-binding motif 3 protein (RBM3) is a cold-shock protein

which functions in various aspects of global protein synthesis, cell prolifer-

ation and apoptosis by interacting with the components of basal transla-

tional machinery. RBM3 plays important roles in tumour progression and

cancer metastasis, and also has been shown to be involved in neuroprotec-

tion and endoplasmic reticulum stress response. Here, we have solved the

solution NMR structure of the N-terminal 84 residue RNA recognition

motif (RRM) of RBM3. The remaining residues are rich in RGG and

YGG motifs and are disordered. The RRM domain adopts a βαββαβ
topology, which is found in many RNA-binding proteins. NMR-monitored

titration experiments and molecular dynamic simulations show that the

beta-sheet and two loops form the RNA-binding interface. Hydrogen

bond, pi–pi and pi–cation are the key interactions between the RNA and

the RRM domain. NMR, size exclusion chromatography and chemical

cross-linking experiments show that RBM3 forms oligomers in solution,

which is favoured by decrease in temperature, thus, potentially linking it to

its function as a cold-shock protein. Temperature-dependent NMR studies

revealed that oligomerization of the RRM domain occurs via nonspecific

interactions. Overall, this study provides the detailed structural analysis of

RRM domain of RBM3, its interaction with RNA and the molecular basis

of its temperature-dependent oligomerization.

Introduction

RNA-binding proteins (RBPs), as the name suggests,

are a class of proteins which form complexes with

nucleic acids, such as microRNAs, messenger RNAs,

small inducible RNAs, small nuclear RNAs, small

nucleolar RNAs, transfer RNAs and noncoding RNAs

[1]. They can also, on occasion, bind with single

stranded DNA [2]. Approximately 7.5% of the human

protein-coding genome consists of RBPs [1]. RBPs

play key roles in pre-mRNA splicing, editing,

polyadenylation, localization, turnover, translation and

degradation [3,4]. As a result of their involvement in

such critical cellular functions, RBPs are tightly
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regulated and their dysregulation, mutations or mislo-

calization are implicated in several diseases. RBPs,

such as TDP-43, Matrin-3 and FUS, are speculated to

be involved in amyotrophic lateral sclerosis (Lou Geh-

rig’s disease), a fatal neurodegenerative disease [5,6].

RBPs have also been linked to Alzheimer’s disease [7],

Parkinson’s disease [8], cancers [9,10], and cardiovas-

cular diseases [11]. In recent years, RBPs have emerged

as important therapeutic targets [12]; thus, renewing

efforts in elucidating the molecular mechanisms of

their functions.

RNA-binding proteins interact with nucleic acids via

one or more domains [1]. There are several types of

domains that recognize RNA, such as RNA-binding

domain (RBD) also known as ribonucleoprotein (RNP)

domain or RNA recognition motif (RRM), double-

stranded RNA-binding domain (dsRBD), K-homology

(KH) domain (type I and type II), zinc finger (ZnF,

mostly C-x8-X-x5-X-x3-H), Sm domain, DEAD/

DEAH box, cold-shock domain, Pumilio/FBF (PUF or

Pum-HD) domain and the Piwi/Argonaute/Zwille

(PAZ) domain [1]. One such domain can bind 2–6
nucleotides. Higher copies of these domains facilitate

binding of more complex nucleotide sequences and add

to sequence specificity. The RRM domain is the most

widespread in higher organisms [13]. Apart from these

folded domains, glycine–arginine-rich (GAR/RGG/

RG/GRG) motifs are often found as auxiliary regions

in several human RBPs [14]. These motifs are intrinsi-

cally disordered, bind RNA and have been implicated

in several diseases, including neurodegenerative and

neuromuscular diseases, and cancer [15,16].

The RNA-binding motif protein 3 (RBM3) belongs

to the glycine–arginine (GR)-rich RBP family protein

with one N-terminal RNA-binding domain (RRM)

and highly flexible C-terminal GR-rich region [17].

Because of one RRM domain, RBM3 belongs to the

class IVa-GRP subfamily, members of which contain

up to three RRM domains [18]. Human RBM3 is

expressed in the X chromosome [19], and is reported

to have increased expression in conditions of cold

stress [20]. Originally discovered as a cold-shock pro-

tein, recent discoveries indicate that it also has cyto-

protective functions under diverse stress conditions,

such as hypoxia [21] and infection-induced fever [22].

RBM3 plays important roles in the basal translational

machinery, influencing global protein synthesis, cell

proliferation and acts as a modulator of apoptosis.

RBM3 is also implicated in tumour progression, can-

cer metastasis as well as in neuroprotection [18].

In this study, we have characterized the structure

and nucleic acid binding function of two truncated

RBM3 constructs RBM31–84 and RBM31–110, which

contain the minimal RRM domain and sequences con-

taining several arginine–glycine (RG) motifs appended

to the RRM domain respectively. We report the

atomic structure of the 84-residue RRM domain of

human RBM3, as determined by solution NMR spec-

troscopy. The RRM domain adopts the typical RRM

fold consisting of a beta-sheet packed against two

alpha helices. By NMR-based titration experiments,

we have identified the RNA-binding surface of RBM3

and presented an RNA-docked model of the protein.

A 500-ns molecular dynamics simulation of the pro-

tein–RNA complex reveals the important features of

RNA recognition by the RRM domain. Furthermore,

we show that both RBM31–84 and RBM31–110 form

dimer, trimer and higher oligomers in solution. RBM3

oligomerization is favoured with decrease in tempera-

ture. Overall, this study presents the structural basis of

RBM3 function and should provide the necessary

molecular framework for investigation of its function

at the cellular and organismal levels.

Results

Identification of the RRM domain in RBM3

Based on sequence analysis using interpro [23] and

sequence alignment using MultAlin [24] of several

RNA-binding domains (Fig. 1A), the 1–84 N-terminal

residues of RBM3 were found to contain an RRM

domain. The remaining C-terminal residues were pre-

dicted to be disordered by Rosetta Residue Disordered

Prediction [25] and DisProt [26]. The disordered part

of RBM3 is rich in arginine, glycine and tyrosine resi-

dues and contains several RGG/RG motifs, which are

known to facilitate binding to nucleic acids [14]. The

complete RBM3 protein (157 residues) is highly aggre-

gation prone and forms inclusion bodies after overex-

pression in bacteria. The inclusion bodies were purified

using established protocol [27] and solubilized in

guanidinium solution but did not refold. Hence, two

truncated constructs, RBM31–84 and RBM31–110, were

designed where RBM31–84 should contain the RRM

domain and RBM31–110 consists of additional 26

amino acid residues from the disordered region con-

taining several RGG/RG motifs. RBM31–84 is highly

soluble and conducive to structural studies while

RBM31–110 is less stable in solution.

In order to characterize the RBM3 structure at

atomic resolution, we used solution NMR spec-

troscopy. Two-dimensional 1H–15N heteronuclear

single-quantum coherence (HSQC) spectrum of 15N-

labeled RBM31–84 has well-dispersed cross-peaks, indi-

cating a properly folded domain (Fig. 1B). The
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1H–15N HSQC spectra of RBM31–110 had a few strong

signals in the centre of the spectra, which are charac-

teristic of an unfolded protein sequence (Fig. 1C). The

additional peaks from the glycine residues in the RG/

RGG motifs can be clearly identified. Overlay of the

two 1H–15N HSQC spectra shows near-perfect overlap

of the well-dispersed peaks from the structured regions

(Fig. 1D). This indicates that RBM3 consists of a

folded domain in its N terminus and an unstructured

region in C terminus, and the truncation of RBM3 did

not alter the structure of its N-terminal folded

domain.

Solution structure of the RRM domain of RBM3

A 13C and 15N-labeled RBM31–84 sample was prepared

to assign its backbone and sidechain atoms. Of 82

nonproline residues, 80 backbone amides were unam-

biguously assigned (Fig. 2A). The diastereotopic

methyl groups present in valines and leucines were

assigned using a fractional (10%) 13C-labeled sample

[28]. The chemical shifts of backbone 13Cα, 13Cβ, 13CO,
1Hα, 1HN and 15N were used to calculate the secondary

structure propensity with MICS [29]. Residues K7 to

H81 are folded and contain secondary structures con-

sisting of two α-helices and four β-strands (Fig. 2B),

which is consistent with the RRM fold [13]. The 1H-,
15N- and 13C-assigned chemical shifts of RBM31–84

have been deposited in the BMRB (http://www.bmrb.

io/) under the accession number 50804 [30].

The structural ensemble of RBM31–84 was deter-

mined with PONDEROSA-C/S coupled with Xplor-

NIH using established protocols [27,31]. The distance

and dihedral angle restraints were used for structure

calculation. In the final step, 200 structures were calcu-

lated, from which the statistics of the 20 lowest energy

structures are summarized in Table 1. These structures

align with a RMSD of 0.22 Å for backbone atoms

and 0.96 Å for all heavy atoms across all ordered resi-

dues (Fig. 3A). On average, 14.5 distance restraints
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Musashi2            D     D         LD   I    A                                 PASV. KVLGQPHHE  SKT DPKV FPRRAQPKMVTRTKK                 
hnRNP_A1             VEE  DA         DGR V    A                                T   V.  AMNARPHKV   V EPKR VSREDSQR.......                 
ELAVL4              D  DA  A   LNG  LQ   I V  A                                 PK  EK INT   LR  TKT K SY RP.............                 
Fox1_homolog_1      N  DA  A   L G   EGR I VN A                                 SA  DR REK H TVV   K E  N TA.............                 
Splicing_factor_U2AF  VDE  QA    DG   QG    I                                   S   TT  M.AF  IIF  QSLK RRPHD.............                 
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Fig. 1. Determination of the folded domain in RBM3. (A) The sequence of RBM3 is aligned with other RRM domains. The semi-conserved

residues are in red and conserved are highlighted in red in this alignment. The RNP1 and RNP2 motifs are also shown. 1H–15N-HSQC

spectra of (B) RBM31–84, the minimal RRM domain and (C) RBM31–110, the RRM domain with RG/RGG motif sequences. (D) Overlay of the

two spectra shows perfect overlap of the well-dispersed peaks. There are extra peaks at the centre for RBM31–110 (blue).
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were obtained for each residue with no consistent vio-

lations. Backbone Φ and Ψ torsion angles of 91.5%

residues are in favoured regions in the Ramachandran

plot. None of the residues are in disallowed regions.

Based on the 13Cβ and 13Cγ chemical shifts [32], both

the proline residues in the protein have trans configu-

ration of the preceding peptide bonds. The structural

coordinates of RBM31–84 have been deposited in the

PDB under the accession code 7EB1 [33].

RBM31–84 adopts a compact globular fold com-

posed of a four-stranded antiparallel β-sheet (β1: L8 to

G12, β2: S33 to K39, β3: R47 to F54 and β4: R75 to

H81) packed against two α-helices (α1, E19 to F29;

and α2, P57 to M67; Fig. 3B), which is characteristic

of RNP-type RNA-binding domains [34]. The two

well-conserved RNP2 ([I/L/V]-[F/Y]-[I/L/V]-X-N-L)

and RNP1 ([K/R]-G-[F/Y]-[G/A]-[F/Y]-[I/L/V]-X-[F/

Y]) sequences found in RNP-type domains are also

found in RBM31–84. The corresponding sequences are
8LFVGGL13 and 47RGFGFITF54, and observed in the

β1 and β3 strands respectively. The two helices in

RBM31–84 have N-capping boxes, which partially com-

pensate for the lack of i to i + 4 hydrogen bonds of

the first four residues in a helix and stabilize the helix.

Such N-capping boxes have been observed in several

RBPs [35–38]. The N-capping boxes are formed by

the residues D18 and N56 for the α1 and α2 helices

respectively. RBM31–84 also has three long loops, a 6-

residue loop between β1 and α1, a 7-residue loop

between β2 and β3 and another 7-residue loop

between α2 and β4. Interestingly, the β1-α1 and α2-β4
loops, when seen in the ensemble structure, show tight

conformation, indicating low flexibility of these long

loops (Fig. 3).

Backbone 15N relaxation measurement of RBM3

To characterize the global hydrodynamic and local

dynamic properties of RBM3, amide 15N R1, R2 and

heteronuclear NOE relaxation data were collected for

RBM31–84 and RBM31–110 at 25 and 35 °C. Excellent
fits were obtained for all sets of data except for

RBM31–110 at 25 °C. Heteronuclear {1H}–15N NOE

values are a sensitive measure of the fast-internal back-

bone motions of proteins in the picosecond to

nanosecond timescale [39]. The heteronuclear NOE

values of residues in helices and sheets are uniformly

high with an average of 0.74 � 0.05 at 25 °C and
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Fig. 2. Backbone assignment and

secondary structure propensity of RBM31–

84. (A) Assigned 15N-1H HSQC spectrum of

RBM31–84 at 25 °C and pH 6.5. The side

chain amide resonances of Asn and Gln are

connected with lines. (B) Secondary

structure propensities of RBM1–84 are

plotted for each residue. The propensities

for helices and strands are coloured in

orange and maroon respectively. The

resulting secondary structure is shown at

the top with helices as cylinders and

strands as arrows.
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0.68 � 0.06 at 35 °C for RBM31–84 and 0.71 � 0.07 at

35 °C for RBM31–110, which demonstrates a well-

ordered domain (Fig. 4A). The loops β1–α1 and α2–β4
have similarly high NOE values indicating rigid con-

formation, which is consistent with the structural

ensemble (Fig. 3A). The β2–β3 loop is relatively flexi-

ble, again consistent with the determined structural

ensemble.

The transverse relaxation rate constants (R2) for the

folded domain in RBM31–84 have average values of

12.3 � 1.8 s−1 and 14.1 � 2.5 s−1 at 25 and 35 °C
respectively. The folded domain in RBM31–110 has an

average R2 of 17.1 � 3.0 s−1 at 35 °C (Fig. 4B). The

longitudinal relaxation rate constants (R1) show much

less variation (Fig. 4C). The average R1 value for

RBM31–84 of 1.7 � 0.1 s−1 at 25 °C increased to

2.5 � 0.2 s−1 at 35 °C. RBM31–110 has an average R1

of 2.0 � 0.2 s−1 at 35 °C. Collectively, these data

(Tables S1–S3) indicate that the RRM domain is prop-

erly folded and has a stable three-dimensional struc-

ture.

RBM3 forms oligomers in solution, favoured by

lowering of temperature

During sample preparation, it was observed that both

RBM3 constructs behave well at room temperature but

tend to aggregate at lower temperatures, RBM31–110 more

drastically than RBM31–84 (Fig. S1). In order to get a bet-

ter insight into this temperature-dependent behaviour, the
15N relaxation data collected at 25 and 35 °C were used

to determine the isotropic rotational correlation time (τc),
which is proportional to the mass of a protein and, hence,

reports on its oligomeric state in solution. Using the R2/

R1 ratios for well-ordered amides in the RRM domain,

the correlation times (τc) were determined to be

7.84 � 0.04 ns at 25 °C and 6.52 � 0.06 ns at 35 °C for

RBM31–84 and 8.77 � 0.06 ns at 35 °C for RBM31–110.

The expected correlation times (τc) for the monomeric

proteins are 5.41 ns at 25 °C and 5.23 ns at 35 °C for

RBM31–84 and 6.67 ns at 35 °C for RBM31–110 [40]. Inter-

estingly, NMR dynamic studies on other RRM domains

also report higher than expected correlation times [35,41].

The determined correlation times are in between

those expected for monomeric and dimeric proteins.

Hence, it can be postulated that both RBM31–84 and

RBM31–110 exist in an equilibrium of monomeric and

dimeric forms resulting in an intermediate correlation

time. However, higher order oligomeric forms, at

lower populations, could not be ruled out. Also, a

17% decrease in correlation time for RBM31–84 as the

temperature is increased as opposed to an expected

3% decrease indicates that increase in temperature dis-

favours oligomerization.

Since the monomer and the oligomers are in

dynamic equilibrium, the surface residues of the RRM

domain involved in oligomerization should experience

chemical exchange resulting in their enhanced R2

relaxation and chemical shift perturbation. The pro-

duct of the relaxation rate constants R1R2 recognizes

residues with chemical exchange without the influence

of anisotropic motion [42]. The surface residues 15, 16,

28, 41, 67, 69, 73 and 74 in the RRM domain show

significantly enhanced R1R2 compared to the average

of the domain (Fig. 4D). Furthermore. 1H–15N HSQC

spectra were collected for both RBM31–84 and

RBM31–110 at 35, 30, 25 and 20 °C. Greater than aver-

age chemical shift perturbations between the tempera-

tures 20 and 35 °C were observed for the surface

residues 15, 16, 18, 20, 28, 35, 40, 41, 55 and 72 (Fig. 4

E). The chemical shift perturbation of amide protons

Table 1. Restraints and statistics for 20 best solution NMR

structures of RBM31–84. Structure quality was evaluated using

wwPDB validation pipeline (wwPDB-VP: 2.17.1) and PSVS v1.5

[62].

Parameters Value

a) Distance and dihedral restraints

Distance restraints

Total number of NOE 1214

Short range (|i–j| ≤ 1) 605

Medium range (1 < |i–j| < 5) 156

Long range (|i–j| ≥ 5) 453

Hydrogen bond restraints 50

Dihedral angle restraints

Total 142

Phi (φ) 71

Psi (ψ) 71

Total number of restricting constraints 1406

(b) Average RMSD (Å) against the lowest energy model for

ordered residuesa

Backbone atoms (N, Cα, C, O) 0.224 � 0.05

All heavy atoms 0.965 � 0.13

(c) RMSD from ideal geometry

For bond lengths (Å) 0.012

For bond angles (°) 1.4

(d) Consistent violations

Distance constraints (> 0.5 Å) 0

Dihedral angle constraints (> 5°) 0

Van der Waals constraints (> 0.2 Å) 0

(e) Ramachandran plot summary (%) from PROCHECK for selected

residuesb

Residues in most favoured regions 91.5

Residues in additionally allowed regions 8.5

Residues in generously allowed regions 0

Residues in disallowed regions 0

aOrdered CYRANGE [74] residues: 6–35, 46–84.; bSelected resi-

dues: 5–83.
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with more than −4.6 ppb�K−1 also indicate their

involvement in hydrogen bond formation [43]. Almost

all such residues are found in the α-helices and β-
strands of the RRM domain, thus, indicating consis-

tency between the temperature-dependent studies and

the determined structure (Fig. 4E).

To further investigate the oligomeric states of

RBM31–84 and RBM31–110, chemical cross-linking and

size exclusion chromatography (SEC) experiments

were performed. Chemical cross-linking with glu-

taraldehyde followed by SDS/PAGE clearly showed

protein bands with molecular masses corresponding to

monomeric, dimeric, trimeric and higher order oligo-

mers for both RBM31–84 and RBM31–110 (Fig. 5A). In

the SEC, RBM31–84 elutes at 91.02 mL and RBM31–110

elutes at 86 and 93.4 mL (Fig. 5B). These correspond

to molecular masses of 19.1 kDa for RBM31–84 and

28.5 and 15.8 kDa for RBM31–110 respectively (Fig. 5

C). The calculated molecular mass of monomeric

RBM31–84 and RBM31–110 are 9.7 and 12.2 kDa

respectively. This is again consistent with the presence

of higher oligomeric states of both RBM31–84 and

RBM31–110 in solution. The temperature dependence

of oligomerization was further confirmed by perform-

ing cross-linking experiments at 5–40 °C, which

clearly shows increase in oligomeric states with

decrease in temperature for both proteins (Fig. 5D

and Fig. S2).

Identification of the nucleic acid binding residues

of RBM3 by NMR titration and molecular

dynamics simulation

In order to determine the nucleic acid binding surface

of RBM3, two titration experiments were performed.

A seven base RNA, 50-GGAGGUG-30, was titrated

into 15N-labeled RBM31–84 and RBM31–110, and
1H–15N HSQC spectra were collected for each titration

point. For both titrations, continuous changes in

chemical shifts of several residues were observed

(Fig. 6A,B) indicating exchange in intermediate to fast

timescale [44]. In order to get structural insight of the

binding interface, a model of the RNA was docked

onto the RBM31–84 structure by HADDOCK [45]

using the perturbed residues as restraints and the

docked RNA-RBM31–84 complex was subjected to

molecular dynamics (MD) simulation (Fig. 6C,D).

For comparison, both the free RBM31–84 and the

RNA-RBM31–84 structures were subjected to all atom

MD simulation for 500 ns under aqueous conditions.

After the first few nanoseconds, the RMSD remained

constant for the entire period of simulation indicating

no major conformational changes in both free and

RNA-bound RBM31–84 (Fig. S3A). The β2-β3 loop

showed the most flexibility in the MD simulations as

seen from the RMSF plots (Fig. S3B), which is consis-

tent with the NMR-derived dynamics (Fig. 4A–C) and

A B

Fig. 3. Solution NMR structure of RBM31–84. (A) The Cα trace of 20 superimposed energy-minimized structures represent the three-

dimensional structure of RBM31–84, with a backbone RMSD of 0.22 Å. (B) The lowest energy conformer of RRM1–84 is shown in ribbon

representation. RRM1–84 adopts four-stranded antiparallel ꞵ-sheet (coloured in maroon) packed against two α-helices (coloured in orange).

Loops are coloured in grey. Structures were generated using PYMOL [75].
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Fig. 5. RBM31–84 and RBM31–110 form higher oligomeric states. (A) Chemical cross-linking of RBM31–110 (lanes 1–3) and RBM31–84 (lanes 5–
7) using glutaraldehyde show protein bands with molecular masses corresponding to monomeric, dimeric, trimeric (indicated by arrows) and

higher order oligomeric states. Lane 4 is the molecular weight marker. (B) In SEC, the elution of the protein standards with known

molecular masses is shown in solid line, RBM31–84 in dotted line and RBM31–110 in broken line. (C) The Log of molecular weight is plotted

against the corresponding elution volume for the protein standards. The standard curve is a solid straight line, based on which the molecular

masses of the eluted proteins are determined. (D) Intensity of the protein bands corresponding to monomer, dimer and trimer, obtained

from chemical cross-linking experiments, are plotted as function of temperature ranging from 5 to 40 °C for both RBM31–84 (top panels) and

RBM31–110 (bottom panels). The left and right panels correspond to two different concentrations of each protein. Bands in each lane are

normalized to the corresponding band at 40 °C.
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Fig. 6. Titration of 15N-labeled RBM31–84 and RBM31–110 with RNA. (A) Chemical shift perturbation of each residue upon titration with RNA

is plotted for RBM31–84 (red) and RBM31–110 (blue). The broken line represents the sum of average and one standard deviation values for

RBM31–84. Residues with greater values are considered to be significantly perturbed. (B) Changes in chemical shifts of a few residues in

RBM31–84 (top) and RBM31–110 (below) are shown. (C) The molecular model of RNA (50-GGAGGUG-30), shown in sticks, bound to RBM31–84,

shown as surface, obtained after 500 ns of MD simulation is shown. The RNA and the protein residues in the binding site are labelled (D).

Structures were generated using PYMOL [75].
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structure (Fig. 3A). Radius of gyration plots show that

the overall dimensions of both structures remained

constant (Fig. S3C).

During MD simulation of the RNA-RBM31–84 com-

plex, in the first 10n s, the RNA reoriented from its

compact conformation around β1-α1, β2-β3 loops to

an extended conformation that was tightly packed

against the β-sheets and remained stable throughout

the simulation (Fig. S4). The stability of the complex

can be attributed to multiple interactions, such as

hydrogen bonds, hydrophobic and ionic interactions

(Fig. S5), between the protein and the RNA (Fig. 7).

All the interactions were determined based on geomet-

ric constraints and visual inspection in VMD. Most of

these interactions revealed by MD simulation are sup-

ported by the chemical shift perturbations from the

NMR titration experiments (Table S4).

Discussion

The RBM3 protein has three distinct regions: a folded

RNA-binding RRM domain, a stretch of RGG/RG

repeats and a low sequence complexity YGG-rich

region. The RRM domain is properly folded while the

C-terminal region of the protein is structurally disor-

dered. Each of these regions have distinct functions.

The RRM domain binds RNA through a canonical

binding interface. The disordered RGG/RG repeats

facilitate high affinity nonspecific interactions with

RNA for RBPs [14]. The flexible YGG sequences are

also reported to modulate protein–protein and pro-

tein–RNA interactions [46]. The flexible RGG/RG and

the YGG motifs are also reported to promote self-

aggregation resulting in liquid–liquid phase separation

in several proteins [46,47].

In this study, solution NMR spectroscopy was used

to determine the structure of the RRM domain of

RBM3. NMR dynamics also show that the appended

RGG/RG region is disordered. The structured domain

has a typical RRM fold with four β-strands forming a

β-sheet and two α-helices. Using a combination of

NMR experiments and molecular dynamics simulation,

the binding of the RRM domain to a seven residue

RNA strand (50 G1-G2-A3-G4-G5-U6-G7 30) has been
characterized with atomic detail. The bound RNA is in

an extended conformation and forms extensive contacts

with the β-sheet, β1–α1 and β2–β3 loops of the RRM

domain (Fig. 7 and Table S4). The conserved residues

F9 and F51 form π-stacking interactions with G5 and

U6 bases respectively. These interactions are present for

almost the entire simulation indicating their high stabil-

ity. Another π-stacking interaction, with less duration,

is observed between a nonconserved residue F15 and

G2 base. This interaction is unique to RBM3 and most

likely contributes to the extended binding conformation

of the RNA. Several arginine sidechains form ionic and

hydrogen bonding interactions with the RNA, resulting

in a stable complex.

This study also revealed that both RBM31–84 and

RBM31–110 form asymmetric dimer, trimer and higher

order oligomers in solution as evident from NMR-

based dynamics, cross-linking and SEC experiments.

Also, this oligomerization is temperature dependent

and is favoured with decrease in temperature. Thus, in

solution the RBM3 protein can be envisioned to be pre-

sent in a dynamic equilibrium of monomer and higher

order oligomeric states (Fig. 8A). Upon RNA titration,

both RBM31–84 and RBM31–110 bind RNA at the same

interface (Fig. 6B). However, the 1H–15N HSQC peaks

of the interface residues keep on broadening with addi-

tion of RNA (Fig. 6B). This behaviour is different from

a simple two-site exchange between free and bound

states [44]. Indeed, the chemical shift perturbation did

not fit to a 1 : 1 binding model. The broadened peaks in

the 1H–15N HSQC spectra (Fig. 6B) most likely result

from exchange between the oligomeric states of the

RBM3-RNA complex. Thus, it can be postulated that

the RBM3–RNA complex also exists in a dynamic equi-

librium of monomeric and oligomeric forms (Fig. 8A).

In order to identify the residues involved in

oligomerization, temperature-dependent chemical shift

perturbation and backbone relaxation were measured.

The surface residues F15, N16, S28 and R41 were

identified by both measurements. Interestingly, these

residues are scattered on the surface of the protein.

Thus, the RBM31–84 domain has multiple ‘sticky’

patches [48] on its surface, which drive the formation

of the asymmetric oligomers (Fig. 8B).

RBM3 is a cold-shock protein with increased expres-

sion in cold stress [20]. It is predominantly found in

the nucleus but can undergo nucleocytoplasmic shut-

tling. For example, RBM3 shuttles to endoplasmic

reticulum (ER) during ER stress [18]. RBM3 has also

been reported to increase the global protein synthesis

under mild hypothermia [49]. It interacts with 60S

ribosomes, helps in formation of active polysomes,

dephosphorylates eukaryotic initiation factor 2 alpha

(eIF2α); facilitates the phosphorylation of eukaryotic

initiation factor 4E (eIF4E) and regulates microRNA

level in cells [50]. However, the molecular details of

how RBM3 modulates global protein expression levels

in stressed conditions is not yet known. It has been

proposed that during ER stress response RBM3 partic-

ipates in stress granules in the cytosol and chaperones

mRNAs, thus, preventing apoptosis [51]. It is also

reported that RBM3 interacts with GTPase-activating
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protein-binding protein 1 (G3BP1) and promotes stress

granules formation in ischemic stress to protect the

cells from apoptosis [52]. Here, we have solved the

RRM domain structure of RBM3 and shown that it

undergoes oligomerization, which is favoured by

decrease in temperature. We postulate that the RBM3

oligomerization upon decrease in temperature can

result in liquid–liquid phase separation and might trig-

ger the formation of stress granules under cold-shock

conditions. Overall, our structural studies should

provide the necessary foundation for the detailed

investigation of RBM3 function at the cellular and

organismal levels.

Materials and methods

Cloning, protein expression and purification

DNA fragments of 252 bp and 330 bp, encoding the RRM

domain (residues 1–84) and extended RRM–RGG domain

Fig. 7. Important interactions at the RNA–RBM31–84 interface. Chemical structures of the seven residue RNA and the RBM31–84 interface

residues are shown. Top right panel indicates the type of interaction. The occurrence of each interaction between RNA and RBM31–84, as

observed during the 500-ns simulation, is shown as percentage of the simulation time.
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(residues 1–110), respectively, of human RNA-Binding

Motif 3 protein (RBM3, UniProt entry P98179/

RBM3_HUMAN), were amplified from human cDNA.

These were cloned in pET28a vector (Novagen, Merck,

Darmstadt, Germany). The resulting construct contained

the gene sequence for the target protein with an N-terminal

His6-affinity tag followed by a thrombin cleavage site. The

constructs were confirmed by DNA sequencing.

The constructs were transformed into Escherichia coli

BL21(λDE3) cells. For NMR studies, uniformly 15N-labeled

RBM31–84 (residues Met1 to Lys84) and RBM31–110 (resi-

dues Met1 to Gln110) were obtained by growing trans-

formed bacteria containing these constructs in M9 minimal

media supplemented with 1 g�L−1 15NH4Cl as the only

source of nitrogen. Similarly, in order to obtain uniformly
13C- and 15N-labeled RBM31–84, transformed bacteria were

cultured in M9 minimal media containing 3 g�L−1

13C6H12O6 and 1 g�L−1 15NH4Cl as the sole carbon and

nitrogen sources respectively. For cross-linking and SEC

studies, bacteria were grown in LB media in order to pro-

duce unlabelled proteins. All cultures were grown at 37 °C
until cell density OD600 reached ~ 0.6, induced with 0.4 mM

IPTG at 22 °C and then grown overnight. Cells were har-

vested by centrifugation, lysed by sonication in a lysis buffer

[100 mM Tris-Cl, 200 mM NaCl, 10 mM Imidazole (pH 8.2)]

and further centrifuged to remove cell debris. The protein

was purified from the resulting supernatant using a Ni2+

affinity column, following which, the His6-tag was cleaved

using a Thrombin CleanCleave Kit (Sigma-Aldrich, St.

Louis, MO, USA). The final proteins RBM31–84 and

RBM31–110 have four remnant N-terminal residues (Gly-Ser-

His-Met) and have molecular mass of 9.7 and 12.2 kDa

respectively. The proteins were exchanged into the final buf-

fer [10 mM sodium phosphate (pH 6.5) and 200 mM NaCl].

For the long-term stability of the proteins, 0.8 mM PMSF,

2 µL of protease inhibitor cocktail and 0.04% sodium azide

were also added to the final samples for NMR spectroscopy.

Due to the absence of tryptophan residues, the concen-

trations of RBM31–84 and RBM31–110 were determined

from a standard BSA plot. Different concentrations (0.2–
1.0 µg�µL−1) of BSA were run in a 12% SDS/PAGE and

the peak intensities (obtained from IMAGEJ [53]) were plot-

ted against the known BSA concentrations. Further, vari-

ous amounts of purified protein (10, 7, 3 and 1 µg) were

A

B

Fig. 8. Model of the oligomerization of RBM3 and RBM3–RNA complex. (A) RBM3 (P) exists in a dynamic equilibrium among monomer (P),

dimer (PP), trimer (PPP) and higher order oligomers (top line). RNA is represented as L (ligand). Monomeric RBM3 can bind one RNA

molecule (PL); dimeric RBM3 can bind one (PPL) or two (LPPL) RNA molecules; and trimeric RBM3 can bind one (PPPL), two (LPPPL) or

three (LPLPPL) RNA molecules. Each of these multimeric forms (free and RNA-bound RBM3) also exchange among themselves. (B) Several

residues on the surface of the RRM domain of RBM3 were identified. These residues, forming ‘sticky’ patches, are coloured in purple.

Structures were generated using PYMOL [75].
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run on a 12% SDS/PAGE and the concentrations were cal-

culated from the peak intensities, using the slope and y-

intercept generated from the BSA standard plot.

NMR experiments and structure calculations

NMR experiments were performed on TCI cryoprobe-

equipped Bruker 600 MHz NMR spectrometer at 25 and

35 °C. Sample concentrations were 0.5–1 mM with 7% D2O

for spin lock. The backbone resonances of the 13C- and
15N-labeled RBM31–84 were manually assigned using two-

dimensional 15N-1H HSQC and three-dimensional NMR

experiments, such as CBCA(CO)NH, HNCACB, HNCO

and HN(CA)CO experiments [54]. The sidechain assign-

ments were obtained using three-dimensional (H)CC(CO)

NH, HBHA(CO)NH, HCCH-TOCSY, H(CC)(CO)NH and
15N-HSQC-TOCSY experiments. These spectra were pro-

cessed with NMRPipe [55] and analysed using NMRFAM-

Sparky [56] with the help of I-PINE automated assignments

[57]. The secondary structure propensity was calculated

from the backbone chemical shifts (1HN, 15N, 13Cα,
13Cβ

and 13CO) using MICS [29].

For the structure calculation, 3D 1H–1H–15N and
1H–1H–13C NOESY-HSQC experiments were recorded with

a mixing time of 110 ms. Nuclear overhauser effect (NOE)-

derived distance restraints and chemical shift-based torsion

angle restraints were used to calculate the three-

dimensional structure of RBM31–84. Well-resolved cross-

peaks were manually assigned, followed by automated

assignment using AUDANA [58]. The solution structure

was determined using PONDEROSA-C/S [59] in conjunc-

tion with Xplor-NIH [60] as described previously [27,31].

We also used the POKY suite, a successor of NMRFAM-

SPARKY and PONDEROSA-C/S, for the restraint refine-

ment for convenience [61]. Structure calculations were per-

formed in iterative cycles. In the initial stages, 40 structures

were calculated and of these, the 20 lowest energy struc-

tures were used for further analysis and structural calcula-

tions. In the final cycle, 200 structures were calculated

using explicit water refinement. Out of these, the 20 lowest

energy structures were selected for submission. The final

structures were validated using the online servers, such as

wwPDB validation service (https://validate-rcsb-2.wwpdb.

org/) and PSVS 1.5 [62]. We have developed and used an

in-house POKY Notepad script, ponderosa_rmsd_script.py,

for the superimposition of 20 structures and RMSD calcu-

lations of backbone and heavy atoms from ordered residues

(https://github.com/pokynmr/POKY/blob/master/User_

Modules/ponderosa_rmsd_script.py). Secondary structural

boundaries were determined using DSSP [63], and struc-

tures were visualized using PYMOL (PyMOL molecular

graphics system, version 2.4.1, Schrodinger, LLC, New

York, NY).

Temperature-dependent 1H–15N HSQC experiments were

obtained for RBM31–84 and RBM31–110 at 20, 25, 30 and

35 °C. The actual chemical shift changes by correcting for

the change in D2O lock was obtained using the webserver

Shift-T [64]. It was also used to determine the slope of the

amide proton chemical shifts with temperature in ppb/K.

Backbone amide 15N relaxation

Backbone amide 15N R1, R2 and steady-state heteronuclear

NOE experiments were collected at 25 and 35 °C. The

heteronuclear {1H}-15N-NOE spectra were acquired with

and without 3s of 1H saturation and a recycle delay of 5s.

Heteronuclear NOE for each residue was determined from

the ratios of the peak heights in the two spectra and uncer-

tainty in NOE was estimated by propagation of error using

the spectral noise. The R1 and R2 relaxation rate constants

were determined by fitting the peak intensities to single

exponential decay {It = I0*exp(−t*Ri)}, where ‘It’ is the

peak intensity, ‘t’ is the relaxation delay, I0 is the Initial

intensity and Ri is either R1 or R2 [65]. Uncertainties in the

rate constants were estimated by Monte Carlo simulation.

The relaxation data for the folded domain were used to

determine the global correlation times τc using Tensor2

[66].

The product of R1R2 reports residues undergoing chemi-

cal exchange. Residues involved in chemical exchange (Rex)

have slower motion at μs-ms timescale and observe higher

R1R2 values [42]. In order to determine the residues under-

going significant chemical exchange, average and standard

deviation of R1R2 for RBM31–84 and RBM31–110 were cal-

culated at 25 and 35 °C (Fig. 4). Residues with greater than

the average + 2*standard deviation values were discarded

and the average was recalculated with the rest of the amino

acids. Residues with R1R2 values greater than the recalcu-

lated average plus one standard deviation value are consid-

ered for further analysis. Errors in R1R2 were calculated by

propagation of error.

RNA titration into RBM3

HPLC purified RNA (50 GGAGGUG 30) was purchased

from Sigma. A 1.107 mM stock solution of RNA

(72 nmoles) was titrated into 15N-labeled RBM31–84 or

RBM31–110, and 15N-HSQC spectra were collected at each

titration point. The initial concentrations of RBM31–84 and

RBM31–110 were 80 and 100 μM respectively. The molar

ratios of RNA to RBM31–84 in the titration sets were 0,

0.33, 0.67, 1.0 and 1.8, whereas for RBM31–110, the molar

ratios were 0, 0.33, 0.67, 1.0 and 1.4. The chemical shifts in

the 15N-HSQC spectra at each titration point were assigned

by tracking the shifts relative to the initial free protein.

Combined amide chemical shift changes for each residue

were obtained as

Δδobs ¼ ΔδHð Þ2 þ 0:154 ∗ΔδNð Þ2
n o1=2

,
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where ΔδH and ΔδN are the observed change of chemical

shifts from the free state to the bound state, in the proton

and nitrogen dimension respectively. Errors in the chemical

shift changes were calculated from the changes of unper-

turbed peaks.

In order to determine the residues undergoing significant

perturbation after titration with RNA, average and stan-

dard deviation of chemical shift perturbation (Δδobs) for

RBM31–84 were calculated. Residues with greater than the

average + 2*standard deviation values were discarded and

the average was recalculated with the rest of the amino

acids. Residues with Δδobs greater than the recalculated

average plus one standard deviation value are considered

for further analysis.

Chemical cross-linking experiments

Several protein concentrations of purified RBM31–84 and

RBM31–110 (0.5, 0.25 and 0.125 mg�mL−1) were mixed with

0.05% of glutaraldehyde solution in 20-μL reaction volume

at room temperature for 30 min. Reactions were quenched

by adding SDS and heating at 95 °C for 10 min. These

samples were run on 12% SDS/PAGE and stained with

Coomassie blue.

For temperature-dependent experiments, protein samples

at two concentrations were equilibrated in a PCR thermo-

cycler for 10 min at 5, 10, 15, 20, 25, 30, 35 and 40 °C.
Glutaraldehyde was added to these samples and equili-

brated for another 20 min at their respective temperatures,

quenched by SDS and resolved on a 12% SDS/PAGE.

Bands corresponding to monomer, dimer and trimer were

quantified by IMAGEJ [53]. Errors in the band intensity were

estimated from background noise.

Size exclusion chromatography

RBM31–84 and RBM31–110 were run on a HiLoad 16/600

Superdex PG200 column (GE Healthcare, Uppsala, Swe-

den) at ambient temperature. A set of standard proteins

with molecular weights of 200, 66, 29 and 12.4 kDa were

run under the same conditions to serve as molecular weight

markers. The molecular mass of RBM31–84 and RBM31–110

was determined from the calibration plot of standard

molecular weight markers.

Structure calculations of the RBM31–84-RNA

complex using HADDOCK

The structural model of the complex between RBM31–84

and RNA is generated using HADDOCK [45]. For

RBM31–84, the active residues (directly involved in the

interactions) used in the docking were 9, 11, 12, 15–17, 38,
43, 48, 50, 51. The active nucleotides in the RNA strand

were defined as nucleotides 1–7. The active residues were

selected on the basis of the chemical shift perturbation

data. For the RNA, we used the X-Ray crystal structure of

the Sxl (RBD1–RBD2)-RNA complex (PDB entry 1B7F)

as model [67]. We mutated the Sxl RNA using PYMOL to

obtain the structure of our 7-nucleotide (50-GGAGGUG-

30) RNA fragment. Docking was performed using the

ensemble of 20 lowest energy RBM31–84 free structures

(PDB entry 7EB1). During docking, the protein was kept

rigid, while the RNA was kept flexible. The HADDOCK

score is derived by combining electrostatic, van der Waals

energies along with additional empirical terms (desolvation,

buried surface area) and restraints violation energies [45].

The structure with the best HADDOCK score and lowest

Z-score was selected for further analysis.

Molecular dynamics simulations of free and RNA-

bound RBM31–84

Both free RBM31–84 and RNA-bound RBM31–84 (obtained

from HADDOCK docking) were subjected to molecular

dynamics simulations using GROMACS software suite (version

2018.7) [68]. The topologies were built employing

AMBER99SB force field and solvated in a cubic box using

TIP3P water model [69]. Solvation was followed by addi-

tion of 4 and 10 sodium ions for neutralization of the free

RBM31–84 and RNA-bound RBM31–84 systems respec-

tively. This was followed by energy minimization using a

force convergence criteria of 1000 kJ�mol−1�nm−1 for elimi-

nation of steric clashes. The energy-minimized systems were

then equilibrated under NVT and NPT ensemble sequen-

tially for 500 ps each. Unrestrained production simulations

for both free RBM31–84 and RNA-bound RBM31–84 were

then performed for 500 ns using leapfrog dynamics integra-

tor with an integration step size of 2 fs. Periodic boundary

conditions (PBC) were considered in all three dimensions.

A cut-off of 1.2 nm was used for calculating Coulombic

and van der Waals interactions; long-ranged electrostatic

interactions were computed using Particle-mesh Ewald

algorithm and P-LINC algorithm was used for constraining

the bond lengths [70,71]. Berendsen’s modified thermostat

was used for simulating constant temperature at 300 K and

Parrinello–Rahman pressure coupling was used to maintain

a constant pressure of 1 bar [72,73]. The PBC corrected tra-

jectory was used for analysis after completion of the pro-

duction simulation using modules available in GROMACS

and in-house python scripts.
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