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Abstract

Long stretches of intrinsically disordered regions (IDRs) are abundantly present in eukaryotic transcription
factors. Although their biological significance is well appreciated, the underlying structural and dynamic
mechanisms of their function are still not clear. Using solution NMR spectroscopy, we have studied the
structural and dynamic features of two paralogous HOX transcription factors, SCR and DFD, from Drosophila.
Both proteins have a conserved DNA-binding homeodomain and a long stretch of functionally important IDR.
Using NMR dynamics, we determined flexibility of each residue in these proteins. The flexibility of the residues
in the disordered region is not uniform. In both proteins, the IDRs have short stretches of consecutive residues
with relatively less flexibility, that is, higher rigidity. We show that one such rigid segment is specifically
recognized by another co-transcription factor, thus highlighting the importance of these rigid segments in
IDR-mediated protein–protein interactions. Using molecular dynamics simulation, we further show that the
rigid segments sample less conformations compared to the rest of the residues in the disordered region. The
restrained conformational sampling of these rigid residues should lower the loss in conformational entropy
during their interactions with binding partners resulting in sequence specific binding. This work provides
experimental evidence of a “rigid-segment” model of IDRs, where functionally important rigid segments are
connected by highly flexible linkers. Furthermore, a comparative study of IDRs in paralogous proteins reveals
that in spite of low-sequence conservation, the rigid and flexible segments are sequentially maintained to
preserve related functions and regulations of these proteins.

© 2019 Elsevier Ltd. All rights reserved.
Introduction

An intrinsically disordered region (IDR) in a protein
is a stretch of amino acids that remains unfolded
even in the presence of other folded domains in the
complete protein. In eukaryotes, at least one-third
of all proteins contain long IDRs [1]. Recent studies
have shown that proteins containing IDRs play
important roles in cell signaling events and regulation
of various biological processes [2]. IDR functions
may arise from a specific disordered conformation,
from inter-conversion between several disordered
conformations, and transitions between disordered
and ordered states [3]. IDRs are involved in multiple
r Ltd. All rights reserved.
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interactions with diverse partners and are known to
play key roles in protein–protein interaction networks
[4]. Large multi-protein complexes employ these
IDRs to assemble the component proteins [5]. One
such assembly where IDRs play important roles is
the recruitment of cofactors by transcription factors
during regulation of gene expression.
Transcription factors are DNA-binding proteins

that control gene expression. These proteins bind
to specific promoter or enhancer sequences in the
DNA and subsequently recruit the transcriptional
machinery. Due to their central role in many biological
processes, transcription factors are under tight
regulation, disruption of which may lead to several
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2 IDRs have functional rigid segments
diseases ranging from developmental disorders to
cancer. Transcription factors in eukaryotes have long
stretches of disordered regions that are necessary for
their function [6]. For example, IDRs of 30 residues or
moreare found in 92%and96%of transcription factors
in Homo sapiens and Drosophila melanogaster,
respectively [7]. Typically, proteins in a transcription
factor family have a conserved DNA-binding domain
that recognizes very similar DNA sequences [8].
The altered DNA-binding specificity, leading to
paralog-specific biological functions, is provided by
the appended regions that may contain other folded
domains and IDRs [9]. These IDRs regulate transcrip-
tion factor function via post-translational modifications
such as phosphorylation, ubiquitination, and sumoyla-
tion [10]; interaction with other transcription factors
and proteins [11]; and auto-inhibition [8]. All of these
processes require specific sequences on IDRs to
interact with enzymes and proteins. The underlying
mechanism by which IDRs achieve such site-specific
interactions in the absence of any folded conformation
is still not clear and is the focus of the present study.
In this study, using solution NMR spectroscopy,

we have characterized the structure and dynamics
of two transcription factors from Drosophila, Sex
Combs Reduced (SCR) and Deformed (DFD). Both
have long stretches of disordered regions. These
proteins belong to the family of HOX transcription
factors that play key roles in the morphological
development of all bilateral animals. In Drosophila,
SCR controls the development of the adjacent
segments namely labial and prothorax [12], while
DFD is required for the development of the maxillary
and mandibular segments [13]. SCR and DFD have
417 and 586 amino acids, respectively, and contain a
conserved 60-residue DNA-binding homeodomain.
The remaining residues, based on sequence, are
predicted to be intrinsically disordered. For SCR, it has
been shown that the homeodomain and its preceding
~30 residues are sufficient to carry out most of its
in vivo functions such as homeotic transformations,
transcriptional regulation, and protein–protein interac-
tions [14]. Moreover, these N-terminal 30 residues
have been shown to regulate the functional specific-
ities in both SCR and DFD [15]. Hence, SCRK298–K384

and DFDT337–K426 constructs, which include the
60-residue homeodomain and ~30 residues preced-
ing it, have been used in the present study. From a
comparative study of these paralogous proteins, we
aim to elucidate the important structural and dynamic
features of their IDRs that are required for the
functional regulation of these transcription factors.
We have completely assigned the 1H, 13C, and

15N chemical shifts of the backbone atoms of
SCRK298–K384 and DFDT337–K426 by solution NMR
spectroscopy. Chemical shift-based secondary
structure prediction and 15N dynamic studies show
that ~30 residues in the N-terminus are completely
disordered, while the DNA-binding homeodomain is
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
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properly folded in both proteins. Reduced spectral
density analysis of the 15N dynamics data revealed
variations in flexibility in the disordered region. A
closer inspection showed that the disordered region is
composed of segments of rigid and flexible residues.
Interestingly, one of these segments of rigid residues
is conserved in both SCR and DFD, and using NMR
titration experiments, we show that this rigid segment
is specifically recognized by a co-transcription factor
Extradenticle (EXD). Based on our findings in these
two paralogous proteins, we propose that IDRs have
segments of rigid residues that are functionally
important and suggest a straightforward method of
their identification from backbone NMR relaxation
experiments. Furthermore, using molecular dynamics
(MD) studies, we show that residues in the rigid
segments sample fewer conformations compared to
other residues in the disordered region. Thus, the loss
in conformational entropy should be less for these
rigid segments enabling them to interact specifically
with partner molecules. Overall in this study, we show
that IDRs in HOX transcription factors have inter-
spersed rigid segments that are functionally important
and report a method to identify them by solution NMR
spectroscopy.
Results

Backbone assignments reveal that SCR and DFD
have disordered N-terminal region followed by a
well-folded homeodomain

The 15N–1H heteronuclear single quantum co-
herence (HSQC) spectra of SCRK298–K384 and
DFDT337–K426 showed well-dispersed peaks indicat-
ing the presence of a folded domain. These 15N–1H
HSQC peaks were assigned by standard 1H/13C/15N
heteronuclear NMR experiments (Fig. 1). The back-
bone chemical shifts of 1Hα, 1HN, 15N, 13Cα, 13Cβ,
and 13CO, nuclei were used to predict the secondary
structures of SCRK298–K384 and DFDT337–K426 using
the program MICS (Fig. 2a and e) [16]. In both
proteins, the secondary structure prediction shows
the presence of three alpha-helices that form the DNA-
binding homeodomain. These secondary structures
agree well with the crystal structure of SCR in complex
with DNA (PDB: 2R5Y). The N-terminal residues of
both proteins (SCR: K298 to Y331; DFD: T337 to
T374) show lack of secondary structure, highlighting
their highly flexible nature. Thus, SCRK298–K384 and
DFDT337–K426 have ~30 disordered residues followed
by a properly folded 60-residue homeodomain.

Backbone 15N relaxation studies of SCR andDFD

Amide 15N relaxation data (R1,R2, and NOE) were
collected for both SCRK298–K384 and DFDT337–K426
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Fig. 1. Assigned 15N–1HHSQCspectra of SCRK298–K384 andDFDT337–K426. The 15N–1HHSQCspectra of (a) SCRK298–K384

and (b) DFDT337–K426 were assigned by triple-resonance experiments. The peaks of the homeodomain are well dispersed,
while those of the N-terminal residues appear in the 7.5- to 8.5-ppm range in the proton dimension, which is typical for
disordered regions.

3IDRs have functional rigid segments
at 25 °C. The heteronuclear {1H}–15N NOE values
are in the range of 0.7 to 1.0 for the homeodomain
residues (Fig. 2b and f). This is again consistent
with a well-folded domain. For theN-terminal regions
in SCRK298–K384 (Fig. 2b) and DFDT337–K426 (Fig. 2f),
the hetero-NOE values progressively decrease
as residues get farther from the homeodomain,
indicating loss of ordered structure and increased
flexibility. Interestingly, a small conserved sequence
“YPWMK(R/K),” which is situated ~20 residues away
from the folded homeodomain, has positive or very
low negative hetero-NOE values in both proteins. The
“YPWMK(R/K)” region is flanked with residues with
negative hetero-NOE values on either side. This
indicates that this sequence is relatively more ordered
than the neighboring residues within the disordered
N-terminal region.
In both proteins, the transverse relaxation rate

constants (R2) have an average value of ~8 s−1 for
the homeodomain which decreases to ~2.5 s−1 for
the N-terminal region (Fig. 2c and g). This further
indicates the lack of order in the N-terminal residues.
Again the “YPWMK(R/K)” residues have relatively
higher R2 values compared to the neighboring
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
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residues, further indicating the presence of a relatively
more ordered stretch of residues than the neighboring
residues within the disordered N-terminal region.
The longitudinal relaxation rate constants (R1) show
much less variation (Fig. 2d and h). The R1 values
for the N-terminal residues are marginally smaller
compared to the homeodomain. Collectively, these
data indicate that in both proteins the homeodomain is
properly folded and has a stable three-dimensional
structure, whereas the N-terminal residues are
disordered except the conserved “YPWMK(R/K)”
sequence that displays relatively higher order com-
pared to the remaining residues in the disordered
region.

Reducedspectral densitymapping revealsvarying
degree of flexibility in the disordered regions

Reduced spectral density mapping was done for
SCRK298–K384 and DFDT337–K426 using the corre-
sponding 15N relaxation data sets (Fig. 3 and S1).
The extent of motions of the N–H bond vectors for
each residue can be estimated from these spectral
density functions. For rigid regions, the spectral
., Dynamic Studies on Intrinsically Disordered Regions of Two
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Fig. 2. SCRK298–K384 and DFDT337–K426 have disordered N-terminus followed by folded homeodomain. Secondary
structure predictions of (a) SCRK298–K384 and (e) DFDT337–K426 based on backbone chemical shifts indicate disordered
N-terminal region and folded homeodomain in both proteins. The homeodomain contains three alpha helices (shown as
cylinders) that align well with the DNA-bound structure of SCR (PDB: 2R5Y). Heteronuclear 15N-NOE of (b) SCRK298–K384

and (f) DFDT337–K426 have values greater than 0.7 for most of the homeodomain residues and rapidly decrease
for the N-terminal residues. The “YPWM” residues are highlighted and show positive 15N-NOE. Transverse relaxation rate
constants (R2) for (c) SCR

K298–K384 and (g) DFDT337–K426 have an average value of 8/s for the homeodomain that decreases
to 2.5/s for the N-terminal residues. Again the “YPWM” and their neighboring residues have significantly higher R2 values.
Longitudinal relaxation rate constants (R1) for (d) SCRK298–K384 and (h) DFDT337–K426 are relatively featureless. The
disordered region has marginally lower R1 values compared to the homeodomain.

4 IDRs have functional rigid segments
density function is dominated by the low-frequency
components, that is, J(0) and J(ωN), while for flexible
regions, the higher-frequency component, that is,
J(0.87ωH) also makes significant contribution [17].
The R1, R2, and hetero-NOE measurements were
done at 14.1-T (600-MHz) field strength, and thus,
the spectral densities were measured at 0-, 60-, and
522-MHz frequencies. In both proteins, J(0) has an
average value of ~2.3 ns/rad for the homeodomain,
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
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which decreases to ~0.55 ns/rad for the N-terminal
region (Fig. S1). On average, the J(0) and J(ωN)
terms of the N-terminal residues decrease by factors
of 0.24 and 0.79 to those of the homeodomains,
respectively. In contrast, the J(0.87ωH) terms of the
N-terminal residues are approximately 3.43 times
larger than those of the homeodomain. Thus, the
higher-frequency component J(0.87ωH) has increased
contribution in the N-terminal region. This indicates
., Dynamic Studies on Intrinsically Disordered Regions of Two
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5IDRs have functional rigid segments
that the N-terminal residues are more mobile due to
lack of ordered structure as compared to the home-
odomain residues in both proteins.
It is important to note that in both proteins the

residues in the N-terminal region are not equally
flexible. To probe the variation of flexibility in this
region, we compared the three spectral density
values of each residue to the average value in this
N-terminal region of ~30 residues. Consecutive
residues with significantly higher J(0) and J(ωN)
and significantly lower J(0.87ωH) constitute a rela-
tively rigid region. On the other hand, consecutive
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
Paralogous Transcription Factors Reveal Rigid Segments ..., Journa
residues with significantly lower J(0) and J(ωN) and
significantly higher J(0.87ωH) constitute a relatively
flexible region. This analysis revealed three distinct
segments with varying degrees of flexibility (Fig. 3) in
both proteins. These segments in SCRK298–K384 are
as follows: 305YPWMKR310 (rigid), 316STVNAN321

(flexible), and 322GETKR326 (rigid). Similar regions in
DFDT337–K426 are as follows: 343IYPWMKK349 (rigid),
354GVANGS359 (flexible), and 360YQPGMEPK367

(rigid). Interestingly, these rigid and flexible segments
are sequentially equivalent regions in these two
proteins (Fig. 4a).
., Dynamic Studies on Intrinsically Disordered Regions of Two
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Fig. 4. Sequence alignment of Drosophila HOX transcription factors. (a) Sequences of the constructs SCRK298–K384

and DFDT337–K426 are aligned. The three helices in the homeodomain as determined from backbone chemical shifts are
highlighted in yellow. The folded and the disordered regions have 85% and 38% sequence identity, respectively. In the
disordered region, the rigid and flexible segment residues are colored pink and blue, respectively. The residues RQR (bold
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sequence specificity. (b) Sequences of eight HOX transcription factors in Drosophila are aligned. The homeodomain is
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6 IDRs have functional rigid segments
Residue-wise flexibility in the disordered region
is readily obtained from R1R2/(1 − NOE)

Although reducedspectral density analysis highlight-
ed varied degree of flexibility in the disordered regions
of SCRK298–K384 and DFDT337–K426, it would be
beneficial for studies on IDRs to identify rigid and
flexible segments directly from the raw data, that is,
R1, R2, and NOE values. Our data reveals that for
residues in the rigid regions, spectral density function
is dominated by low-frequency components J(0)
and J(ωN), while for residues in flexible regions,
the higher-frequency component J(0.87ωH) also
becomes significant. Hence, for each residue in the
IDR the product J(0) * J(ωN)/J(0.87ωH) gives a
measure of relative rigidity where rigid and flexible
regions have higher and lower than average values,
respectively (Figs. 5a and c and S2). In these plots,
the aforementioned rigid and flexible segments can
be clearly identified. It has been noted by several
groups that spectral density functions J(0), J(ωN),
and J(0.87ωH) are dominated by R2, R1, and (1 −
NOE) data, respectively [17–20]. This observation is
validated by the corresponding correlation plots
between these parameters for both SCRK298–K384

and DFDT337–K426 (Fig. 5). Thus, replacing the
spectral density function at these three frequencies
by the equivalent relaxation data set, residue-wise
rigidity may also be obtained from R1R2/(1 − NOE)
(Fig. 5b and d). The correlation between J(0) * J(ωN)/J
(0.87ωH), and R1R2/(1 − NOE) is 0.99 for both
proteins (Fig. 5h and l). Thus, the product R1R2/(1 −
NOE) gives a measure of rigidity for each residue in
an IDR. A segment of rigid residues can be identified
as consecutive residues with R1R2/(1 − NOE) values
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
Paralogous Transcription Factors Reveal Rigid Segments ..., Journa
more than average of the disordered region. This
provides a simple analysis based on well-established
NMR relaxation methods to identify rigid segments in
IDRs of proteins.

SCR and DFD interact with partner protein EXD
through identified rigid segment

In order to test the functional significance of the
identified rigid segments, we studied the interac-
tion of the HOX proteins SCR and DFD with their
co-transcription factor EXD, which also has a DNA-
binding homeodomain [21]. Several promoters rec-
ognized by HOX transcription factors have com-
posite binding sites for both HOX andEXD [22]. It has
been shown that when SCR and EXD homeodo-
mains are bound to DNA, the disordered region of
SCR also interacts with EXD through the “YPWM”
motif [23], which has been identified as a rigid
segment in free HOX protein in our study. The DNA
most likely acts as a scaffold and facilitates the
interaction of HOX and EXD. We wanted to test
whether the HOX–EXD interaction also occurs in the
absence of DNA. EXD gene corresponding to
residues A238–I300 was cloned into pET28 (a+)
vector, expressed, and purified. A 15N–1H HSQC
spectrum was collected for 15N-labeled sample
and showed well-dispersed peaks indicating a
properly folded homeodomain (Fig. S3). Unlabeled
homeodomain of EXDA238–I300 (residues A238 to
I300) was titrated into 15N-labeled SCRK298–K384 or
DFDT337–K426, and each titration point wasmonitored
by 15N–1H HSQC experiment (Figs. 6 and S4).
Consecutive residues Y305 to R310 (P306 lacks
backbone NH) in the rigid segment of SCRK298–K384
., Dynamic Studies on Intrinsically Disordered Regions of Two
l of Molecular Biology, https://doi.org/10.1016/j.jmb.2019.02.021
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Fig. 5. Identifying the rigid and flexible segments in IDRs from the 15N relaxation data. The rigid and flexible segments
in the IDRs are readily identified from the residue-wise plot of J(0) * J(ωN)/J(0.87ωH) for the disordered region
of (a) SCRK298–K384 and (c) DFDT337–K426. The same segments can also be identified directly from the plot of R1*R2/
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7IDRs have functional rigid segments
showed significant chemical shift changes (Fig. 6a).
Similarly, the stretch of residues R341 to K349
(P345 lacks backbone NH) in the rigid segment
of DFDT337–K426 showed significant chemical shift
changes (Fig. 6b). The remaining residues of both
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
Paralogous Transcription Factors Reveal Rigid Segments ..., Journa
SCRK298–K384 and DFDT337–K426 have no significant
chemical shift perturbation, indicating a very specific
interaction between the rigid segment of the HOX
proteins andEXD.Alsono other residues in the flexible
region and the homeodomain showed significant
., Dynamic Studies on Intrinsically Disordered Regions of Two
l of Molecular Biology, https://doi.org/10.1016/j.jmb.2019.02.021
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Fig. 6. Titration of 15N-labeled HOX with EXD. The chemical shift perturbation of free and bound SCRK298–K384

(a) and DFDT337–K426 (b) is shown for each residue. In the inset, the change in peak position is shown for the Tyr and Trp
residues in the “YPWM”motif for both proteins. HOX-to-EXD molar ratio in each titration is as follows: blue, 1:0; turquoise,
1:0.5; green, 1:1; orange, 1:2; red, 1:3; purple, 1: 4.5 for SCR and 1:5 for DFD.

8 IDRs have functional rigid segments
chemical shift changes. Thus, the HOX–EXD interac-
tion is specifically mediated by the “YPWM” rigid
segment even in the absence of DNA.
In the crystal structures of SCR and EXD bound to

DNA (PDB: 2R5Y and 2R5Z), the residues Y305 to
R310 of SCR interact with EXD (Fig. 7). These are
the exact same residues of SCRK298–K384 that show
significant chemical shift changes in our titration
experiment. Thus, SCR and EXD interact in a very
similar manner through the six 305YPWMKR310

residues both in the presence or absence of DNA.
DFDT337–K426, similarly, showed significant chemical
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
Paralogous Transcription Factors Reveal Rigid Segments ..., Journa
shift changes for residues R341 to K349 and thus
interacts with EXD through nine residues in the
disordered region. To check the effect of this relatively
larger binding interface of DFD (nine residues)
with respect to SCR (six residues), we determined
the HOX–EXD dissociation constants from the chem-
ical shift changes. The dissociation constants (KD)
were found to be 2.6 ± 0.4 and 1.3 ± 0.4 mM for
the binding of EXDA238–I300 to SCRK298–K384 and
DFDT337–K426, respectively. Thus, DFDT337–K426

binds to EXDA238–I300 relatively more tightly than
SCRK298–K384 in the absence of DNA.
., Dynamic Studies on Intrinsically Disordered Regions of Two
l of Molecular Biology, https://doi.org/10.1016/j.jmb.2019.02.021
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Fig. 7. SCR-EXD bound to DNA. (a) Crystal structure (PDB: 2R5Y) of SCR (orange) and EXD (cyan) bound to DNA.
The conserved DNA recognition helix H3 inserts into the DNA major groove, while the N-terminal disordered region loops
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9IDRs have functional rigid segments
MD simulation reveals restricted conformation
sampling by the rigid segments

Our dynamic studies by solution NMR spectros-
copy revealed that the disordered N-terminal regions
in both SCRK298–K384 and DFDT337–K426 have
stretches of rigid and flexible residues. This exper-
imental observation is reminiscent of the “rigid-
segment model” of folded proteins proposed by
Fitzkee and Rose [24]. This model postulates that
“…protein structures are partitioned alternately into
rigid segments linked by individual flexible residues”
[24]. In case of IDRs, we observe by NMR dynamic
experiments that rigid segments are separated by
stretches of flexible residues. In order to further test
whether a disordered region of a protein indeed follows
the “rigid-segment model,” MD simulations were
performed on a 91-residue model of SCRK298–K384.
Two starting structures with different conformations
of the flexible region were used to perform two 100-ns
MD simulations.
For folded proteins, flexibility is measured fromMD

simulations by aligning each structure in the trajec-
tory to a reference structure and computing root
mean square fluctuation (RMSF). For IDRs, such an
approach does not give a meaningful result as the
RMSF keeps on increasing for residues farther from
the aligned structured region (Fig. 8a). To get a
meaningful measure of residue-wise flexibility, an
algorithm was devised, which is loosely based on the
method used by Fitzkee and Rose [24] to identify
flexible residues that connect the rigid segments.
Since torsion angle dynamics also occurs in the
ps–ns timescale [25], we reasoned that two 100-ns
simulations should capture the dynamics of the
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
Paralogous Transcription Factors Reveal Rigid Segments ..., Journa
disordered region. For each residue, the Φ and Ψ
torsion angles were determined from each structure
in the two 100-nsMD trajectories. The corresponding
Ramachandran plot for each residue consisting of
200,000 torsion angles was divided into 2° by 2°
boxes. All the boxes that were occupied at least twice
were counted and normalized by the total number of
boxes, that is, 32,400 resulting in a flexibility index for
each residue (Fig. 8b).
In the homeodomain, the helices and the loops

exhibit low and high flexibility indices, respectively
(Fig. 8b). This is expected as helices are restrained
by backbone hydrogen bonds and have very
restricted backbone torsion angles, while loops are
less restrained. The N-terminal disordered region
also shows high flexibility index. Inspecting the rigid
and flexible segments, which were identified by NMR
studies, shows that overall the rigid segments have
lower flexibility index compared to the flexible
segments. This is indeed consistent with our postu-
late that the rigid segments in these IDRs sample
relatively less conformations. This is clearly seen
in the Ramachandran plots for the residues Y305
and R326 in the rigid, and R310 and N321 in the
flexible segments (Fig. 8c). Thus, the flexibility index
described here is a convenient way of measuring
residue-wise dynamics from MD simulations and is
especially useful for IDRs.
Discussion

Traditional structural biology relies on the structure–
function paradigm that elucidates the function of
a protein from its well-defined three-dimensional
., Dynamic Studies on Intrinsically Disordered Regions of Two
l of Molecular Biology, https://doi.org/10.1016/j.jmb.2019.02.021
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Fig. 8. MD simulation reveals less conformational sampling for rigid segments. (a) RMSF for each residue was
calculated from 10,000 structures extracted at 10-ps interval from one 100-ns MD simulation. RMSF in the disordered
region keeps on increasing as residues get farther from the folded domain. (b) Residue-wise flexibility index was calculated
from 200,000 structures extracted from two 100-ns MD simulations. It shows rigid helices and flexible loops in the
homeodomain. The N-terminal disordered region shows variable flexibility. The rigid and flexible segments identified by
NMR studies are highlighted in pink and blue, respectively. (c) Ramachandran plot for four residues from 200,000
structures. Residues Y305 and N321 are from rigid and flexible segments, respectively. The flexible residue N321
occupies more Φ–Ψ space and hence samples more conformations compared to the rigid residue Y305. Two arginines,
R310 and R326, are also shown for comparison. Population in each box is shown in log scale, 100 is blue and 103 is red.

10 IDRs have functional rigid segments
structure. This paradigm works well for folded proteins
and has led to many important discoveries [26], but it
is not adequate to study IDRs in proteins. IDRs are
devoid of any three-dimensional fold and consist of
dynamically exchanging conformations [27]. Hence, it
is not trivial to describe the structural behavior of such
dynamic proteins and infer biological roles from them
[28]. Several approaches using solution NMR spec-
troscopy have been described to structurally charac-
terize IDRs. NMR chemical shifts [29–31], hydrogen
exchange rates [32], 15N-relaxation measurements
[33,34], J-coupling [35], and residual dipolar couplings
[36] have been used to determine the existence of
local transient secondary structures, while paramag-
netic relaxation enhancement has been used to study
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transient long-range contacts [37,38]. Although these
experiments provide important insights into IDRs,
the total restraints obtained are much less than the
overall conformations sampled by IDRs [39]. Thus,
the structural characterization of IDRs is an under-
determined problem. Hence, instead of attempting
an ensemble description, we have focused on one
structural characteristic of IDRs, that is, residue-wise
rigidity, whichwepostulate is highly significant for their
biological function. To investigate this, we chose two
paralogous HOX transcription factors, SCR and DFD,
from Drosophila that have well-characterized biolog-
ical roles of their IDRs [15]. Although the DNA-binding
homeodomains are highly conserved, the disordered
regions have little sequence identity (Fig. 4a). Hence,
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11IDRs have functional rigid segments
the method to identify rigid segments, described here,
should be applicable to other IDRs.

Identified rigid regions are functionally important

Analysis of 15N-relaxation measurements revealed
two distinct stretches of relatively rigid residues in
the disordered region of both SCRK298–K384 and
DFDT337–K426. One stretch of residues “YPWMK(R/K)”
contains a conserved motif “YPWM” in HOX proteins
(Fig. 4b). The “YPWM” motif is recognized by
HOX cofactors named TALE (three amino acid loop
extension), a family of transcription factors that
cooperatively bind DNA along with HOX proteins
(Fig. 8). InD.melanogaster, EXD is the TALE cofactor.
Using NMR titration experiments, we show that
the EXDA238–I300 homeodomain specifically binds
only to the “YPWM” motif in the disordered regions
of both SCRK298–K384 and DFDT337–K426 even in the
absence of DNA. Thus, this rigid segment is indeed
involved in recruiting the co-transcription factor EXD
resulting in cooperative DNA binding by HOX and
EXD.
This cooperative HOX–EXD binding is very signif-

icant for HOX function as it modulates the DNA-
binding specificity of the HOX factors. The isolated
DNA binding homeodomain of most HOX proteins
recognizes very similar AT-rich sequences such as
5′-TAAT[T/G]A-3′ [40,41]. Since most HOX paralogs
in an organism recognize very similar sequences, the
DNA-binding by their homeodomains is not sufficient
to explain their distinct and very specific biological
functions. Moreover, the Drosophila genome has
more than 150,000 copies of these sequences,
which is much more than the number of annotated
protein-coding genes in this organism [42], indicating
that HOX factors should recognize a longer stretch of
DNA sequence. An expanded DNA sequence, such
as 5′-AGATTTATGG-3′, is recognized by the HOX–
EXD combination, where one half-site is bound
by EXD and the other half-site by HOX proteins
(Fig. 8a). In combination with EXD, the HOX proteins
can recognize DNA sequences different from the
consensus DNA sequence [43]. It has been proposed
that the cooperative DNA binding by EXD through the
“YPWM” motif elicits a latent DNA-binding specificity
in HOX transcription factors. Thus, the “YPWM”
motif plays an important role in specific promoter
site recognition by the HOX–EXD combination in
Drosophila and HOX–TALE combinations in other
vertebrates.
The other identified rigid region in the disordered

N-terminus of SCR and DFD is not conserved.
Interestingly, the residues 325−KRQRT−329 (SCR
numbering) that immediately follow this rigid region
are conserved in many HOX factors (Fig. 4b).
The arginine residues in this segment have been
shown to contact the negatively charged backbone
of the DNA and thus also help in determining the
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HOX–EXD specificity [23]. Overall, the intervening
residues between the “YPWM” motif and the DNA-
binding homeodomain in both SCR and DFD have
been shown to play a critical role in determining
paralog-specific DNA-binding specificity. A chimeric
DFD with the SCR intervening sequences has been
shown to exhibit SCR-like functions in vivo [15].
Thus, both the rigid segments in the disordered
regions of SCR and DFD, identified in our study,
play very important roles in determining the specific
biological functions of these proteins.

Importance of rigidity in IDRs and its origin

Biological functions of IDRs rely on their ability to
act as interaction modules to multitude of partners
[44–46]. Binding to a partner molecule requires the
selection of a few binding-competent conformations
from the vast number of conformations explored
by IDRs. This large loss in conformational entropy
prohibits binding interactions. Based on a survey of
structures of IDRs bound to partner proteins, it
has been proposed that short regions in IDRs may
exhibit limited conformations, which correspond to
the bound form [47]. Our 15N-relaxation measure-
ments on free proteins indeed show the existence of
dynamically rigid stretches of amino acids separated
by highly flexible residues. Rigid segments in IDRs
ensure that these stretches of amino acids sample
significantly less number of conformations thus,
minimizing the loss in conformational entropy and
increasing their binding affinity to partner molecules.
We performed two 100-ns MD simulations, resulting

in 200,000 structures, to determine the conformational
space sampled by the residues in SCRK298–K384. For
each residue, theΦ–Ψ torsionangles from the200,000
structures were mapped in the Ramachandran plot,
which gives a measure of the conformations sampled
by the residue. Our MD simulations on SCRK298–K384

indeed show that the amino acids in the rigid
segments sample less Φ–Ψ space as compared to
those in the flexible segments (Fig. 8c). Using NMR-
monitored titration experiments, we further show that
the rigid “YPWM” segment in both SCRK298–K384 and
DFDT337–K426 is specifically bound by the EXD
transcription cofactor. Moreover, using chemical shift
perturbations, we show that the exact same residues,
that is, 305YPWMKR310 of SCRK298–K384 interact with
EXD both in the absence (Fig. 6) or presence of DNA
(Fig. 7).
In order to compare the structures of the

305YPWMKR310 residues in the bound and free
SCRK298–K384, we mapped their torsional angles
in the crystal structure and our MD simulations
(Fig. S5). The Φ–Ψ torsion angles of each residue in
the 305YPWMKR310 segment from the MD simula-
tions occupied certain area in the Ramachandran
map, signifying the conformations sampled by these
residues in the free state. The corresponding Φ–Ψ
., Dynamic Studies on Intrinsically Disordered Regions of Two
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12 IDRs have functional rigid segments
torsion angles of each residue in the 305YPWMKR310

segment in the crystal structure were found to
be within this area in the Ramachandran map.
This indicates that although the rigid segment
samples relatively less number of conformations, it
does sample the binding competent conformation
(Fig. S5). Inspection of the torsion angles of the
bound 305YPWMKR310 segment shows that residues
306PWM308 have helical torsion angles, while the
other three residues have torsion angles correspond-
ing to an extended conformation.
It is important to note that in the first rigid segment

containing the “YPWM motif,” residues R341 to
K349 in DFDT337–K426 have higher R1R2/(1 − NOE)
values compared to the residues I304 to R310 in
SCRK298–K384 (Fig. 5), indicating a more relative
rigidity of this segment in DFDT337–K426 compared to
SCRK298–K384. Thus, upon binding, this rigid seg-
ment in DFDT337–K426 should experience relatively
less decrease in conformational entropy compared
to SCRK298–K384, resulting in tighter binding of
the “YPWM” motif to EXD. This is indeed observed
in our titration experiments. Thus, the interspersed
rigid segments in IDRs enable them to bind various
partner molecules and perform their biological
functions.
Since long-range contacts in IDRs are almost

negligible, the rigid segments are stabilized by local
interactions within a few residues. Inspection of the
sequences of the rigid segments in SCRK298–K384

and DFDT337–K426 reveals two types of interactions:
hydrophobic interactions and electrostatic interac-
tions. Conformations of the “YPWM” motif are most
likely restricted by hydrophobic interactions between
the bulky hydrophobic side chains. The other rigid
segment has more charged residues. The fraction
of charged residues and their distribution in IDRs
can restrain their conformation sampling [48]. On
the other hand, the identified flexible region in
SCRK298–K384 and DFDT337–K426 consists of mostly
neutral and polar residues such as Ser, Thr, Asn,
Gly, and Ala, which are incapable of both hydrophobic
and electrostatic interactions. Thus, in the absence of
any restraints, these residues can sample conforma-
tions extensively resulting in a flexible region. These
regions act as flexible linkers that join the functionally
important rigid segments. As they are sterically more
malleable, these linkers can also increase the
interaction efficiency of IDRs with various partner
molecules, especially in large multi-protein com-
plexes. Moreover, due to their high conformational
entropy, the linker regions themselves interact weakly
with other molecules, thus, minimizing non-specific
interactions of IDRs.
The importance of small motifs in IDRs in facilitat-

ing protein–protein interactions is getting significant
attention in the past decade. The eukaryotic linear
motif resource lists over 3000 short linear motifs
(SLiMs), which are within 3 to 15 amino acids in
Please cite this article as: S. Maiti, B. Acharya, V. S. Boorla, et al
Paralogous Transcription Factors Reveal Rigid Segments ..., Journa
length [49]. It is estimated that the human proteome
may contain ~106 such motifs. The eukaryotic linear
motif database is curated manually and uses the
defined motifs to detect SLiMs in query sequences
[50]. Another approach utilizes knowledge based on
PDB structures of short peptides bound to partner
proteins to identify molecular recognition features
(MoRFs) within IDRs [51,52]. In this study, we
describe an experimental method to identify short
rigid sequences in IDRs in free proteins that play
important role in protein–protein or protein–DNA
interactions. These experimentally derived rigid seg-
ments are equivalent to the SLiMs orMoRFs identified
by bioinformatics approach. We envision that identi-
fication of similar rigid segments in other IDRs
can further enhance the determination of SLiMs and
MoRFs.
Conclusions

Although several models have been proposed, a
complete structural description of IDRs, similar to the
folded proteins, remains elusive due to the lack of
sufficient experimental restraints. In this study, we
show that an important characteristic of IDRs, that is,
residue-wise rigidity, can be experimentally deter-
mined from well-established 15N-relaxation mea-
surements. We show that the IDRs are composed of
short segments of rigid residues with limited back-
bone motions that are linked by stretches of flexible
amino acids. In the context of HOX transcription
factors, we further demonstrate that one of the
identified rigid segments, which is conserved in the
family, specifically interacts with a co-transcription
factor. Thus, the rigid segments in the IDRs can fine
tune protein function through specific interactions
with other molecules.
Experimental Methods

Protein expression and purification

SCR, DFD, and EXD genes were cloned into
pET28a(+) expression vector that results in N-
terminal His6-tagged protein. The SCRK298–K384,
DFDT337–K426, and EXDA238–I300 constructs were gen-
erated by PCR. The sole cysteine in SCRK298–K384

(Cys362) was mutated to serine by site-directed
mutagenesis. These proteins were expressed in
Escherichia coli BL21(λDE3) cells at 37 °C. For
15N/13C labeling, M9 minimal media was used. For
unlabeled proteins, LB media was used. Overnight
culture (9–10 h) in 10 ml LB at 37 °C was used to
inoculate 250 ml of LB and grown at 37 °C till the
cell density reaches OD600 of 3.0 [53]. The cells were
harvested and resuspended into 250 ml of M9
minimal media supplemented with 0.25 g 15NH4Cl
., Dynamic Studies on Intrinsically Disordered Regions of Two
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and 1 g 13C6-glucose as the sole nitrogen and carbon
source, respectively. After induction with 1 mM IPTG
for 4 h at 37 °C, cells were harvested and lysed by
sonication in the presence of 4 M guanidineHCl in the
lysis buffer (100 mM Tris–Cl, 200 mM NaCl, 10 mM
imidazole) at pH 8.2. The cell lysate was centrifuged
at 16,639g for 40 min at room temperature. The target
proteins were purified using Ni-NTA column that binds
the His6 tag. The affinity tag was removed by the
Thrombin CleanCleave Kit from Sigma-Aldrich. The
proteins were exchanged into the final buffer [20 mM
sodium phosphate, 50 mM NaCl (pH 5.5)]. For
titration experiments, the final buffer had 150 mM
NaCl. Protein concentrations were determined by UV
absorption using predicted molar absorptivity (ε280)
[54]. For heteronuclear NMR experiments, 15N-
labeled and 15N–13C double-labeled protein samples
were used. The proteins were 0.2–0.6 mM with 7%
D2O for spin lock. For long-term stability of the
proteins, 0.04% NaN3 and 0.4 mM PMSF were also
added to the final sample.

Backbone assignment of SCRK298–K384 and the
DFDT337–K426

NMR experiments were performed on Bruker
600 MHz spectrometer at 25 °C. For sequential
backbone assignment, 15N,13C double-labeled pro-
tein samples were used and triple-resonance exper-
iments such as HNCACB, CBCA(CO)NH, HNCO,
HN(CA)CO, and (H)CC(CO)NH-TOCSY were col-
lected [55]. In addition, HNN spectrum was also
collected to assign DFDT337–K426 [56]. These spec-
tra were processed and analyzed using NMRPipe
[57] and Sparky [58], respectively. Secondary
structure was predicted from backbone chemical
shifts (1HN, 15N, 13Cα, 13Cβ, and 13CO) using the
program MICS [16].

Backbone amide 15N relaxation measurements

Amide 15N R1, R2, and steady-state heteronuclear
NOE experiments were collected at 25 °C for
both proteins. Spectra for R1 (50, 100, 150, 200,
400, 600, 900, and 1200 ms) and R2 (50, 100, 150,
200, 300, 400, 500, 600, and 700 ms) time series
were collected in random order to minimize any
systematic error. A delay of 3 s between scans
was used. Relaxation rate constants R1 and R2
were determined by fitting the peak intensities to
single exponential decay (It = I0 * exp.(− t * Ri)),
where ‘It’ is the peak intensity, ‘t’ is the relaxation
delay, I0 is the initial intensity, and Ri is either R1
or R2 [59,60]. Uncertainties in the rate constants
were estimated by Monte Carlo simulation. The
heteronuclear {1H}–15N NOE values were deter-
mined from the ratio of the peak heights acquired
with and without 3 s of 1H saturation and a total
recycle delay of 5 s. Uncertainties in hetero-NOE
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were estimated by propagation of error using the
spectral noise.

Reduced spectral density analysis of amide 15N
relaxation data

Reduced spectral density mapping was done for
the two constructs, SCRK298–K384 and DFDT337–K426,
by fitting the relaxation data to the Eqs. (1a)–(1c) [61].
Uncertainties in J(0), J(ωN), and J(0.87ωH) were
determined by Monte Carlo simulation.

J 0:87ωHð Þ ¼ 4
5
1

d2

γN
γH

R1 NOE−1ð Þ srad−1 ð1aÞ

J ωNð Þ ¼ 1

3d2 þ 4c2
4R1−7d2J 0:87ωHð Þ� �

srad−1

ð1bÞ

J 0ð Þ ¼
R2−

3
8
d2 þ 1

2
c2

� �
J ωNð Þ− 13

8
d2J 0:87ωHð Þ

d2

2
þ 2
3
c2

ð1cÞ
where

d ¼ μ0hγHγN

8π2

1
rNH3

� �

c ¼ ωNffiffiffi
3

p σ∥−σ⊥ð Þ

rNH ¼ 1:02 Å
σ∥−σ⊥ ¼ −160 ppm for backbone NH;

−89:6 ppm for Trp residue NH

NMR titration experiments

Unlabeled EXDA238–I300 (0.65 mM stock solution)
was titrated into 15N-labeled SCRK298–K384 or
DFDT337–K426, and 15N-HSQC spectra were col-
lected by cryoprobe-equipped 600 MHz Avance III
Bruker spectrometer. The initial concentrations
of SCR K298–K384 and DFD T337–K426 were
0.25 and 0.28 mM, respectively. The molar ratios of
EXDA238–I300 to SCRK298–K384 in the titration sets
were 0, 0.5, 1, 1.5, 2, 3, 4, and 4.5, whereas for
DFDT337–K426, the titration sets were 0, 0.5, 1, 1.5, 2,
3, 4, and 5. Binding of HOX proteins to EXDA238–I300

occurred in the fast exchange limit; thus, amide 1HN

and 15N assignments were obtained by tracking
shifts relative to the initial free HOX protein.
Combined amide chemical shifts were obtained as
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Δδobs = {(ΔδH
2 + (0.154 * ΔδN)

2}½, where ΔδH and
ΔδN are the observed shifts from the free state in
the proton and nitrogen dimension, respectively.
Dissociation constants (KD) were determined using
the following equation

Δ∂obs

¼
Δ∂max P½ �t þ L½ �t þ KD

	 

− P½ �t þ L½ �t þ KD
	 
2−4 P½ �t L½ �t
� �1=2

 �

2 P½ �t
ð2Þ

where Δδmax is the maximum shift change upon
saturation, [P]t is the total concentration ofHOXprotein
and [L]t is the total concentration of EXDA238–I300.
Uncertainties in KD were determined from the
standard deviation of KD obtained from the residues
Y305, W307 backbone amides, and W307 side-chain
amide peaks in SCRK298–K384, as these peaks
showed no spectral overlap. Corresponding residues
in DFDT337–K426 were used to determine the average
and standard deviation of KD.

MD simulation

A model of SCRK298–K384 was built based on the
SCR–DNA structure (PDB: 2R5Y) using the pro-
gram I-TASSER [62]. Starting from this model, an
ensemble of structures was generated by sampling
backbone conformations of the disordered region
using Backrub application in Rosetta [63]. Two
structures with significantly different conformations
of the disordered region were used as the starting
structures for two independent MD trajectories of
100 ns each. A commonprotocol, as described below,
was used for both trajectories.
All-atom CHARMM36m [64], a modified version of

CHARMM36 [65] force field, which is specifically
designed for modeling intrinsically disordered pro-
teins, was implemented. The protein was solvated
in a cubic box using TIP3P [66] explicit water model,
with a padding distance of 25 Å. The system
retained a total charge of +15 after solvation,
which was neutralized with 15 chloride (Cl−) ions.
In addition, sodium chloride (NaCl) was added to
adjust the salt concentration to 150 mM. The system
was subjected to minimization for 10 ps followed
by annealing to raise the temperature to room
temperature (300 K). Furthermore, equilibration was
performed for 1 ns using constant-temperature,
constant-pressure (NpT) ensemble for relaxing the
system. The temperature was controlled by using
Langevin dynamics, and the pressure was kept
constant by Nosé–Hoover Langevin piston [67].
Particle-mesh Ewald method was used to treat the
long-range electrostatic interactions [68]. The equa-
tion of motion was integrated using a time step of
2 fs with the help of r-RESPA [69] multiple-time step
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scheme. The cutoff for non-bonded interaction was
set to 12 Å. MD simulation was performed for 100 ns
for both simulations in NpT ensemble using NAMD
[69]. The trajectory data were saved at an interval of
1 ps for analysis.
RMSFs were calculated for 10,000 structures,

where each structure was extracted from one 100-ns
MD trajectory at 10-ps interval. The homeodomains
of these structures were aligned, andRMSF between
Cα atoms was calculated for each residue.

Determination of flexibility index from MD
trajectories

From both 10-ns MD trajectories, one structure
at every 1 ps was extracted resulting in a set of
200,000 structures. For each residue, the Φ and Ψ
torsion angles were measured from each of these
200,000 structures. The Ramachandran plot (Φ
versus Ψ) of each residue was divided into 32,400
grid boxes (2° × 2°), and 200,000 (Φ, Ψ) pairs of
torsion angles of the residue were placed in their
corresponding boxes in the plot. For each residue, the
flexibility index was determined by counting
the number of boxes occupied at least twice and
dividing it by the total number of boxes, that is, 32,400.
The grid boxes that were occupied at least twice were
considered to eliminate the outliers. The final flexibility
index was calculated by a running average of 3
residues that was assigned to the middle residue.

Accession numbers

The chemical shifts for DFD andSCR are submitted
to BMRB under the accession numbers 27621 and
27622, respectively.
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